Bonjour, j'ai besoin de votre aide pour mon exercice. Dans un tétraèdre, I, J, K, L sont les milieux respectifs des arêtes [AB], [CD], [AD] et [BC]. A) justifie
Mathématiques
Licoco2004
Question
Bonjour, j'ai besoin de votre aide pour mon exercice. Dans un tétraèdre, I, J, K, L sont les milieux respectifs des arêtes [AB], [CD], [AD] et [BC].
A) justifier que vecteur 2IL=vecteur AC et vecteur 2KJ =vecteur AC
B) en déduire la nature du quadrilatère IJKL. MERCI
A) justifier que vecteur 2IL=vecteur AC et vecteur 2KJ =vecteur AC
B) en déduire la nature du quadrilatère IJKL. MERCI
1 Réponse
-
1. Réponse taalbabachir
Réponse :
A) justifier que vecteur 2IL = vecteur AC et vecteur 2KJ = vecteur AC
vec(IL) = vec(IB) + vec(BL) or I et L sont des milieux de (AB) et (BC)
= vec(AB)/2 + vec(BC)/2
vec(IL) = 1/2(vec(AB) + vec(BC)) = 1/2vec(AC) d'après relation de Chasles
d'où 2vec(IL) = vec(AC)
vec(KJ) = vec(KD) + vec(DJ) or K et J milieux de (AD) et (CD)
= 1/2vec(AD) + 1/2vec(DC)
= 1/2(vec(AD) + vec(DC)) relation de Chasles
= 1/2vec(AC)
d'où 2vec(KJ) = vec(AC)
B) en déduire la nature du quadrilatère IJKL
puisque 2vec(IL) = vec(AC) et 2vec(KJ) = vec(AC) donc
2vec(IL) = 2vec(KJ) ⇒ vec(IL) = vec(KJ) donc IJKL est un parallélogramme
Explications étape par étape :